480 research outputs found

    Alice in wonderland syndrome. a clinical and pathophysiological review

    Get PDF
    Alice in Wonderland Syndrome (AIWS) is a perceptual disorder, principally involving visual and somesthetic integration, firstly reported by Todd, on the literary suggestion of the strange experiences described by Lewis Carroll in Alice in Wonderland books. Symptoms may comprise among others aschematia and dysmetropsia. This syndrome has many different etiologies; however EBV infection is the most common cause in children, while migraine affects more commonly adults. Many data support a strict relationship between migraine and AIWS, which could be considered in many patients as an aura or a migraine equivalent, particularly in children. Nevertheless, AIWS seems to have anatomical correlates. According to neuroimaging, temporoparietal- occipital carrefour (TPO-C) is a key region for developing many of AIWS symptoms. The final part of this review aims to find the relationship between AIWS symptoms, presenting a pathophysiological model. In brief, AIWS symptoms depend on an alteration of TPO-C where visual-spatial and somatosensory information are integrated. Alterations in these brain regions may cause the cooccurrence of dysmetropsia and disorders of body schema. In our opinion, the association of other symptoms reported in literature could vary depending on different etiologies and the lack of clear diagnostic criteria

    Cerebral lateralization of language in deaf children and adults with cochlear implant (CI): a neurofunctional study with transcranial doppler ultrasound (fTCD)

    Get PDF
    Severe to profound sensorineural hearing loss (SNHL) is a pathological condition, that affects about 1-3/1000 newborns, but as shown by several studies on humans and animals, can be considered a scientific opportunity for understanding the role of auditory stimuli in neuroplasticity. In the late decades the advent of Cochlear Implantation (CI) has also permitted further investigation on how stimuli restoration can affect neuroplasticity in previously deprived subjects. This issue has been studied in terms of timing of restoration (age of implantation) and side of stimulation (afferented ear), and effects on auditory perception and language development in the case of humans. Within this theoretical frame, the present study focuses on language lateralization, measured through functional Transcranial Doppler ultrasonography (fTCD), a non invasive technique, that quantifies a Lateralization Index (LI) detecting blood flow during language performance. At this aim, 3 different groups of subjects were evaluated by fTCD: (i) 36 children with prelingual profound bilateral SNHL with monolateral CI (and 24 control subjects with normal hearing); they were also evaluated in language achievement (PPVT, TCGB, Inpe high and low frequencies, GASS and language composite score); (ii) 11 children with profound congenital unilateral hearing loss (UHL) (and 11 control subjects with normal hearing bilaterally); they were evaluated on verbal and non verbal development (PPVT, TROG2, IQ, PRI, WMI, PSI, VCI, VMI); (iii) 6 adults with preverbal profound bilateral SNHL, evaluated before and after CI. The results show that (i) left dominance is maintained, even if bilateral representation for language appears more frequent in children with monolateral CI; children with right ear implanted or left LI show better language performance. (ii) left activation was confirmed in children with right UHL while it was not confirmed in those with left UHL. Performance on verbal test were significantly better in children with right hearing. (iii) No significant changes LI were observed in adults, after implantation. On the basis of the present study neuroplasticity of auditory and language circuits appears to be a complex phenomenon in which some biological constraints for left dominance for language are confirmed, but other factors, such as age of reafferentation, and side of afference can play roles, that have still to be clearly understood. Furthermore the present study brings some support to the right ear advantage hypothesis and this should be taken into account while choosing the ear to be implanted, in the case of unilateral CI. From this point of view the right implant could be considered the first choice in monolateral or sequenced implantation. fTDC for LI evaluation can be considered in the case of late diagnosed deafness before implantation

    MOD derived pyrochlore films as buffer layer for all-chemical YBCO coated conductors

    Full text link
    We report a detailed study performed on La2Zr2O7 (LZO) pyrochlore material grown by Metal-Organic Decomposition (MOD) method as buffer layers for YBa2Cu3O7-x (YBCO) coated conductors. High quality epitaxial LZO thin films have been obtained on single crystal (SC) and Ni-5%at.W substrates. In order to evaluate structural and morphological properties, films have been characterized by means of X-ray diffraction analyses (XRD), atomic force microscope (AFM) and scanning electron microscope (SEM). Precursors solutions and heat treatments have been studied by thermogravimetric analyses (TG-DTA-DTG) and infrared spectra (FT-IR) with the aim of optimizing the annealing process. Thin films of YBCO have been deposited by pulsed laser ablation (PLD) on this buffer layers. The best results obtained on SC showed YBCO films with critical temperature values above 90 K, high self field critical current density values (Jc > 1 MA/cm2) and high irreversibility field values (8.3 T) at 77 K together with a rather high depinning frequency vp (0.5 T, 77 K)>44 GHz as determined at microwaves. The best results on Ni-5%at.W has been obtained introducing in the heat treatment a pyrolysis process at low temperature in air in order to remove the residual organic part of the precursor solution

    Eubiosis and dysbiosis: the two sides of the microbiota

    Get PDF
    The microbial ecosystem of the gastrointestinal tract is characterized by a great number of microbial species living in balance by adopting mutualistic strategies. The eubiosis/dysbiosis condition of the gut microbiota strongly influences our healthy and disease status. This review briefly describes microbiota composition and functions, to then focus on eubiosis and dysbiosis status: the two sides of the microbiot

    Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers

    Get PDF
    The objective of this study was to evaluate the effect of Curcuma longa powder and ascorbic acid on some quality traits of rabbit burgers. The burgers (burgers control with no additives; burgerswith 3.5 g of turmeric powder/100 g meat; burgers with 0.1 g of ascorbic acid/100 g meat) were analyzed at Days 0 and 7 for pH, color, drip loss, cooking loss, fatty acid profile, TBARS, antioxidant capacity (ABTS, DPPH and FRAP) and microbial growth. The addition of turmeric powder modified the meat color, produced an antioxidant capacity similar to ascorbic acid and determined a lower cooking loss than other formulations. Turmeric powder might be considered as a useful natural antioxidant, increasing the quality and extending the shelf life of rabbit burgers

    The beneficial effect of Zinc(II) on low-dose chemotherapeutic sensitivity involves p53 activation in wild-type p53-carrying colorectal cancer cells

    Get PDF
    BACKGROUND: Activation of wild-type p53 in response to genotoxic stress occurs through different mechanisms including protein conformation, posttranslational modifications, and nuclear localization, leading to DNA binding to sequence-specific promoters. Zinc ion plays a crucial role in stabilizing p53/DNA binding to induce canonical target genes. Mutant p53 proteins undergo protein misfolding that can be counteracted by zinc. However, whether zinc supplementation might have a beneficial antitumor effect in wild-type p53-carrying cells in combination with drugs, has not been addressed so far. METHODS: In this study we compared the effect of two antitumor treatments: on the one hand wild-type p53-carrying colon cancer cells were treated with low and high doses of chemotherapeutic agent Adriamycin and, on the other hand, Adriamycin was used in combination with ZnCl2. Biochemical and molecular analyses were applied to evaluate p53 activity and biological outcomes in this setting. Finally, the effect of the different combination treatments were applied to assess tumor growth in vivo in tumor xenografts. RESULTS: We found that low-dose Adriamycin did not induce p53 activation in wtp53-carrying colon cancer cells, unless in combination with ZnCl2. Mechanistically, ZnCl2 was a key determinant in inducing wtp53/DNA binding and transactivation of target genes in response to low-dose Adriamycin that used alone did not achieve such effects. Finally, in vivo studies, in a model of wtp53 colon cancer xenograft, show that low-dose Adriamycin did not induce tumor regression unless in combination with ZnCl2 that activated endogenous wtp53. CONCLUSIONS: These results provide evidence that ZnCl2 might be a valuable adjuvant in chemotherapeutic regimens of colorectal cancer harboring wild-type p53, able to both activate p53 and reduce the amount of drugs for antitumor purposes

    Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)

    Get PDF
    Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B
    • …
    corecore